IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Studies of Big Data metadata segmentation between relational and non-relational databases

This content has been downloaded from IOPscience. Please scroll down to see the full text.
2015 J. Phys.: Conf. Ser. 664 042023
(http://iopscience.iop.org/1742-6596/664/4/042023)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 137.138.93.202
This content was downloaded on 09/03/2016 at 08:53

Please note that terms and conditions apply.

iopscience.iop.org/page/terms
http://iopscience.iop.org/1742-6596/664/4
http://iopscience.iop.org/1742-6596
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 042023 doi:10.1088/1742-6596/664/4/042023

Studies of Big Data metadata segmentation between
relational and non-relational databases

M V Golosova', M A Grigorieva', A A Klimentov’, E A Ryabinkin', G Dimitrov’
and M Potekhin’

"National Research Centre "Kurchatov Institute", Moscow, Russia
* Brookhaven National Laboratory, Upton, NY, USA
>CERN, Geneva, Switzerland

Email: marina.golosova@cern.ch, maria.grigorieva@cern.ch

Abstract. In recent years the concepts of Big Data became well established in IT. Systems
managing large data volumes produce metadata that describe data and workflows. These
metadata are used to obtain information about current system state and for statistical and trend
analysis of the processes these systems drive. Over the time the amount of the stored metadata
can grow dramatically. In this article we present our studies to demonstrate how metadata
storage scalability and performance can be improved by using hybrid RDBMS/NoSQL
architecture.

1. Introduction

Scientific computing becomes more and more data intensive nowadays. Experimental science
produces vast volumes of data (hundreds of PBs) to be managed and analyzed. In High Energy
Physics (HEP) data are distributed around the world in more than 120 centers. In order to provide
transparent access and data integrity, to manage the data processing workflow and balance utilization
of computing resources, large experiments use dedicated software services — Distributed Data
Management (DDM) and Workload Management Systems (WMS).

These systems produce metadata that describe actions performed on jobs, stored data and other
entities. One of the most successful systems developed in HEP is PanDA (acronym for Production and
Distributed Analysis) [1], used by thousands of physicists in the ATLAS (A Toroidal LHC
ApparatuS) [2] experiment at the LHC.

PanDA was adopted ATLAS-wide in 2008 for all computing applications and is currently used to
manage all experiment-specific workflow for data processing, simulation and analysis. It provides
location transparency of computing resources and experimental data, processing yearly more than
200 million jobs on over 140 thousand job slots worldwide. Recently, the system started to evolve in
the direction of unification and integration of new computing resource types. The project carried out at
National Research Centre "Kurchatov Institute" (NRC KI) aims to provide higher level of services for
workload and data management, reusing existing components of PanDA when possible. MegaPanDA,
the system being developed, will make PanDA WMS available for non-HEP, extend it beyond the
LHC Computing Grid [3][4] and integrate with Distributed Data Management service.

A central component of PanDA architecture is a database, which at any given time reflects the state
of job payload and stores a variety of vital configuration metadata. Its growth rate has significantly
increased over the last years: from 500 thousand jobs per day in 2011 up to 2 million nowadays. Our

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
BY of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Published under licence by IOP Publishing Ltd 1

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 042023 doi:10.1088/1742-6596/664/4/042023

research is focused on scalability and performance improvements of the PanDA metadata store by
using heterogeneous (hybrid) storage consisting of both relational and non-relational databases.

2. PanDA architecture and associated metadata

PanDA utilizes a concept of pilots, lightweight wrappers for the job payload: they occupy computing
slots at target sites, report back to the central scheduler and pull jobs to be executed. Information about
all current jobs is stored in PanDA central queue and the input data for them are managed by ATLAS
DDM. The latter currently stores more than 160 PB of experimental and simulated data distributed
across more than 120 sites all over the world.

2.1. Metadata storage

Each submitted job is tracked by the PanDA database. While the job is being executed, its records are
updated in real-time to reflect different job state transitions, errors and other events. PanDA server
does no metadata updates after the job is done, but the system doesn't throw away information about
finished jobs as it is useful for statistical analysis of recent workflows, detection of faulty resources,
prediction of future usage patterns and other analytical activities.

Storing all the metadata is a hard task: PanDA manages large computing system handling around
1.5 million jobs per day. Since the expansion of main database tables heavily affects daily work of the
system, it was decided to move “historical” part of metadata to its own tables: storage engine splits job
records into active and archive parts. Both of them are used by the Web-based application called
“PanDA monitor” to visualize the state of current and historical jobs, tasks, datasets and perform run-
time and retrospective analysis of failures on all of the used computing resources.

2.2. Historical metadata and NoSQL

Presently relational database management system (RDBMS, either Oracle or MySQL) is used for both
parts of the storage and after a certain period of time metadata are migrated from active to archive
part. The latter is used only for analytical activities that need no real-time processing capabilities.
Nevertheless, as its volume grows the underlying software and hardware stack for the database engine
hits its limits and this severely harms analytical possibilities of PanDA.

Since the archived part possesses “write once, read many” property, we have investigated a modern
class of database technologies commonly referred to as NoSQL databases. These technologies are
focused on scalability and data availability, sometimes at the expense of consistency and/or atomicity.
They suggest BASE' standard instead of ACID?, which is guaranteed by currently-used RDBMS.
While NoSQL can't fully replace relational databases for the active metadata, it seems to be quite good
for the archive part, where strong consistency is not so essential as sheer performance and scalability.

Main focus of the current work is two-fold. First, we wanted to prototype NoSQL-based archive
part for PanDA metadata storage, the concept of hybrid backend. Second, we need to understand if the
specifics of NoSQL approach are worth the trouble of introducing it into such a system: will the
benefits (like horizontal scalability, lower hardware and operational costs, ability to handle higher data
volumes) outweight problems associated with careful request planning, data denormalization and
additional complexity of system code.

3. Hybrid Metadata Storage framework

Metadata segmentation between relational and non-relational databases yields two main tasks:
synchronization between active and archived parts and PanDA adaptation to the new storage
backends. We had prototyped a heterogeneous framework — Hybrid Metadata Storage (HMS) that

Basic Availability, Soft-state, Eventual consistency
Atomicity, Consistency, Isolation, Durability

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 042023 doi:10.1088/1742-6596/664/4/042023

consists of two corresponding parts. First of them, called “HMS/sync”, performs data migration; the
second, called “HMS/access”, adds NoSQL-related logics to the PanDA monitor.

The very first question was the choice of NoSQL technology and implementation. We decided to
look only at mature NoSQL projects to avoid having experimental HMS prototype on the experimental
database backend. Currently main players in the general-purpose NoSQL database field are Apache
Cassandra, HBase and MongoDB. For prototyping we had briefly analyzed existing experience for
these software products and chose Cassandra, since it is sufficiently simple and robust, provides all
needed functionality for metadata storage and is field-proven.

Nevertheless, we had also studied architecture and characteristics of HBase and MongoDB
focusing on applicability of our approach to these products. Below we will summarize our findings,
focusing on Apache Cassandra.

3.1. Cassandra

Apache Cassandra is an open source distributed database management system designed to handle large
amounts of data across many commodity servers, providing high availability with no single point of
failure. Cassandra offers robust support for clusters spanning multiple data centers with asynchronous
masterless replication allowing low latency operations for all clients [5].

Cluster architecture. Cassandra has the Google-like architecture that takes for granted that system and
hardware failures can and will occur. It addresses the problem of failures by employing a peer-to-peer
distributed system across homogeneous nodes where data is distributed among all cluster participants,
and each server every second gossips its status information to the neighbors.

Cassandra also supports multi-datacenter replication with clusters that can either be used for active
fallback or to split various activity types (writing, analytics, searching) between different clusters. For
the current needs of HMS, the former scenario is foreseen to be useful.

Data storage and access. Every record in database is identified by a unique (composite) primary key
that is divided in two parts. The mandatory one is called partition key; it governs the physical location
of the record. The rest of the components are called clustering keys — they determine location of the
record within the partition acting as indexes for sorting (Fig. 1).

Such a structure dictates a data access algorithm.

Column Family Since the physical location of the record is
Primary (unique) key determined by its partition key, one must explicitly
B clust keyl clust key2 | column specify this key to get related data (or it would cost a

full scan of all stored data, which is unreasonable for
CK2 Valll_l S a system being engineered to work with Big Data).

N Val 2 Cassandra also wants fast searches within

CK2 val2V Val 3 partitions. For key-ordered data the fastest bulk

CK1 val2 " CK2 vall{} Val 4 request is a range query — thus only requests for
Partition2 CK1 val2 <} CK2 vall{l Val 5 continuous ranges of clustering keys are permitted:
querying by any of the clustering keys without
specifying values of the preceding ones will produce
an error.

Data are stored on disks in SSTable (Sorted String Table) files along with the index of associated
partition keys. SSTables are immutable: they are written only once and are never modified in-place,
allowing Cassandra to eliminate random I/O to a large extent, greatly improving query speed.

When a client writes data to the cluster, they go to an in-memory structure called memtable, which
resembles a write-back cache. Every node stores a commit log capturing write activity to ensure
transaction durability — in case of a failure memtable will be recovered next time the server goes up.
Once the memtable is full, it is flushed to disk as an SSTable. Collection of SSTables can be
compacted: immutability leads to obsolete rows stored inside old SSTables. Garbage collection

CK1 vall

Partitionl

Figure 1: Cassandra column family

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 042023 doi:10.1088/1742-6596/664/4/042023

removes them, occasionally merging multiple SSTables to bigger ones eliminating the need to crawl
over many files on each query.

3.2. HBase
HBase is a column-based NoSQL database being very similar to Cassandra in terms of data storage
and access organization (since they have a common ancestor, Google BigTable [6]). But their
approaches to clustering differ significantly: HBase has master/slave architecture with distributed
coordination provided by ZooKeeper and stores data files in HDFS [7], a distributed file system.

For our prototype HBase was considered to be more complicated in installation and operations, but
since the main concept of data organization is the same, everything done for Cassandra can be ported
to HBase.

3.3. MongoDB

MongoDB is a document-oriented NoSQL database with a rich set of search and analytics tools,
providing possibility to organize data almost without regard to future requests. Still, without indices
MongoDB will perform full scans, so for fast requests an appropriate index is needed. Though as
indices store values only for indexed fields, to get the rest of the data MongoDB will have to read all
the matching documents from disk or memory (for already cached documents). It can be inefficient for
reading a large volumes of data: index provides fast search of matching document, but does not offer
efficient data access [8].

4. Hybrid Metadata Storage Framework implementation

To build the prototype we have identified the slowest part of the PanDA monitor to adapt it for the
hybrid storage. The well-known offender is the “Errors” page: it delivers information about jobs that
have not finished correctly in a given period of time, combining this information into 4 summaries and
a histogram (failed jobs vs. time). This page is vital for identifying problematic sites and/or bad jobs.
Initially its generation took considerable time even for requests like “show all errors for today”. So we
decided to start with this page to see what can and should be done to improve its usability.

4.1. HMS/access implementation

PanDA monitor uses Django framework that currently doesn't support NoSQL database backends.
Fortunately there is Django-nonrel project that extends database abstraction layer with NoSQL
interface and offers plugins for Cassandra, MongoDB and Google App Engine [9]. So first we had
completely moved PanDA monitor to Django-nonrel.

Then we modified Django view generating “Errors” page to display only one of the summaries
and a histogram obtaining metadata from Cassandra. Other summaries have the same data
organization, query types and comparable number of entries, so it is trivial to extend our approach to
them and estimate the total page generation time from results for just one summary. As we haven’t
copied additional tables into the archive, HMS/access sends some requests to the SQL part. But it is a
realistic scenario, as the former tables do not grow much and their proper place is in the actual part
(that belongs to the SQL-based backend).

NoSQL storage schema. Currently we have in Cassandra a main archive column family (CF) “Jobs”
that duplicates SQL table “JobsArchived”. It is used to build several secondary request-specific CFs:
“day_site errors” (summary) and “day_errors 30m” (histogram).

To improve query performance, we added data aggregation. Instead of fetching all records for
failed jobs and then creating error summaries in Web application, we precalculate summaries for
30 min. intervals and then put them to the new NoSQL table “day mtime site errors_cnt 30m”
(summary with aggregation). Such optimization is useful even for relational database, but for NoSQL,
where we have no requirements for normalized schema, it is a natural procedure to perform.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 042023 doi:10.1088/1742-6596/664/4/042023

Cassandra has a limitation on the partition size (partition can't store more than 2 billion cells®), so
we had to think carefully about partition key (PtK). For “Jobs” it was not a problem, as we used
pandalD for the PtK, but for secondary CFs we decided to partition by date. It is a safe approach as
long as PanDA handles less than 1 billion jobs per day (even for worst case when all jobs are failed)
and there’s less than 14 M of possible combinations of the site name and error code (that gives us the
ability to handle around 10000 sites if total count of distinct error types stays below 1000).

Primary key for “Jobs” is pandalD (which is also a PtK); this CF stores all the metadata fields
(more than 90). The only possible query is by pandalD.

“day_site errors” has compound primary key: date (PtK), computingsite, errcode, pandalD. It
stores one more column: errdiag (error description). Possible queries are: by a given day; by the day
and (a set of) computing site(s); by the day, computing site and (a set of) error code(s). It is also
possible to get information for a given pandalD (specifying all the preceding keys), but it would be
easier to query “Jobs” column family.

“day mtime site errors_cnt 30m” also has a compound primary key: date (PtK), base mtime,
computingsite, errcode, errdiag. It stores two counters: err_count (number of errors) and job count
(number of errored jobs). Possible queries for this CF are: by given day (it gives number of errors
within every 30 min. interval); by (a set of) 30 min. interval(s); by the interval and (a set of)
computing sites; etc.

Primary key for “day_errors 30m” is a combination of date (PtK) and base_mtime. This CF stores
number of the errors for each 30 min. time bin. Possible queries here are: number of jobs with errors
within certain bin or throughout a given day.

4.2. HMS/sync implementation

When all the data is kept in a single (relational) database, we can use its internal procedures to move
data from active to archive part. But when the archive part goes into NoSQL database, there's a need
for synchronization mechanisms: first, we need to copy already existing archive (metadata for ~900 M
of jobs), and then to keep the archive up-to-date with respect to the new finished jobs.

For these purposes a Python library called “Storage” was developed. It provides unified wrappers
for NoSQL and SQL databases (hiding details about database engine actually used), allowing a
smooth transition from one NoSQL implementation to another one (in case we find out later that
Cassandra doesn't fit requirements of PanDA, or for any other reason it will be decided to use another
NoSQL engine).

Synchronization mechanism implemented in “Storage” synchronization is time-based. The flow
diagram for synchronization and precalculation (synchronization of the tables within the NoSQL
database) is shown on a Fig. 2.

o] “Coordinator” starts the process of initial
obs . . .
> JobsArchived T Temporary table synchronization by querying SQL server and
I Transformed—”L_éﬁxiif_“_’&PPE:i_‘Ld_e_X__! stores results in the internal database-neutral
1 d: & . .
| aa S format. Then it transforms received set of data to
Dat 9 A R
: " & i sfe emon the form Cassandra can consume and sends it to
| Datarequest Data fasteemn®™ | the various NoSQL tables (“Jobs” and temporary
—————— Coordinator . . .
index CFs used for precalculation). This process
is repeated until there's no more data in SQL
Data transformation Precaleulati . e . .
(to Cassandra format) recalculation matching the initial synchronization parameters
Precalculated data (eg time lnterval).

Precalculation goes in almost the same way:

Figure 2: Synchronization and precalculation process ¢ i
coordinator node (not necessarily the same as

3 Cell is a unique combination of values of all clustering keys and a one of the rest of the fields (partition

key isn't included, since it uniquely determines row where these cells are stored). Basically the number of cells
per row is equal to the number of non-empty columns for its primary key plus 1 for the hidden timestamp cell.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 042023 doi:10.1088/1742-6596/664/4/042023

above) sends the request to the already-populated temporary index CFs, transforms the data for the
request-specific CFs and their aggregated counterparts and subsequently flush them to the persistent
NoSQL tables.

Import of 1 M rows from Oracle took ~16 min, so we can synchronize around 40 M records in a
day. It allows us to scale up to 10 times comparing to the current rate of historical metadata flow from
daily PanDA production activities. Precalculation for 1 M rows took ~6 min, thus we are on the bright
side of the future scaling picture too.

Both actions can be done in a single export/precalculation cycle and then will not require any
temporary CFs. But since we transfer large volumes of data via the network, it is better to run
synchronization closer (network-wise) to the Oracle server, and precalculation — closer to the
Cassanda cluster. Also, such separation allows us to do both procedures in a pipeline-like fashion to
further speed up things.

Estimated time of daily synchronization for ATLAS (presently ~1.5M jobs per day) is ~35 min.

5. Prototype testing and results

5.1. General considerations

We has measured time for various parts of PanDA monitor page generation logics. Tests were not
limited to stand-alone database queries: data transformation cycle was included in the measurements.
It was necessarily due to significant differences between DB schemas in SQL and NoSQL. Obtained
measurements have statistical significance: all tests were performed at least 10 times and then
analyzed to have normal distribution with small dispersion (since in fully-deterministic system we
ought to have just spot-on results).

5.2, Layout of a testbed

- To ensure database access locality we had
CERN installed two instances (Fig. 3): one was
i PR deployed at CERN and used pure SQL

4GB RAM i 48 GB RAM metadata backend (ATLAS Oracle-based
: Integration Database replicated from main

Oracle (ATLAS Cassandra cluster .
ST : v ATLAS production database). 'The second
2 nodes : || cPU:4cores 24GH:, instance was set up at NRC KI in the closest

RAM: 128 GB : 1 node—RAM: 48 GB .

CPU: 16 cores, 2.00GHz || ; : CPU: 8 cores, 2.4 GHz PrOXImlty of Cassandra cluster. .BOth
instances were running the same (modified)

11 JediTasks 00 DB > day_site_errors .
Tables — = source code for PanDA monitor, but almost

: day_site_errors_30m all the modifications were related to the
L. .. ol B day errors 30m “HMS/access” NoSQL parts, so for CERN's
_errors

(]

instance it was effectively running the same
code as usual production instances do.

N /
Figure 3: Scheme of the test set-up

T, sec

5.3. Obtained results 1200 —o— Sample A—Tpg
In the first test we have checked the scalability of o — @ = sample A—Tdb P
NoSQL: we studied the dependence of query —— Sample B ~Tpg 4
execution and page generation time on the total 800 — = SampleB —Tdb -
amount of data stored in Cassandra. 600
Measurements were performed for different 400
number of rows matching the query. 200

We had created two test sets: 7.8 M and . M N jobs, 10°
13.8 M rows in request-specific CFs (from 30 M 0 2 4 6 g 10
and 62 M rows in the full archive CFs). Figure 4: Page generation (T,,) and database

Test results (Fig. 4) show that query execution request (T,) time

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 042023 doi:10.1088/1742-6596/664/4/042023

T, sec

A takes the same time for both sets, and 7, is almost a
1200

linear function of the number of jobs matching the
request.

Next the compaction strategies test was
performed. Cassandra has a number of algorithms to
manage SSTable files on disk called compaction
400 - strategies [10]. To check if the choice of the strategy
has any effect on the read performance, we had
created three keyspaces with same data but different
compaction types. Tests revealed that for up to 7 M of
jobs matching the request there's no significant
difference (less than 5% for the first requests and less
than 1% for the last, most massive requests) in read performance (Fig. 5).

This is a very good result, since the completion
of size-tiered compaction requires up to the size of =~ T, s€C| = nNoaggregation—Tpg
the largest SSTable to be free at each node. For the 1200 4| = #= Noaggregation—Tdb
system working with large amounts of data it can 1000 { — o P
be critical. So we can use leveled compaction (that goo
requires less additional space) without sacrificing gq
query performance.

1000 m SizeTiered (DB)

¥ Leveled (DB)
800
DateTiered (DB)
600

200

0 r
0,2 0,5 2,4 5,0 6,5 N jobs, 10°

Figure 5: Comparison of compaction strategies

= &= 30 min— Tdb

400
The next test quantifies the effect of data - _a—&E; R
. . 200 —a &k e S.T_
aggregation. Results show that for 30 min. & X
. . : 13 29 0 >
aggregation interval generation of “Errors” page 0 5 10 Njobs, 10°

takes almost 4 times less (Fig. 6). The speed-up
was mostly achieved by reducing the number of
records stored in database (and, thus, read by
application): non-aggregated table had 7.8 M rows, and aggregated held only 1.9 M. And requests for
a longer periods (months, years) can use more
compact (daily, weekly) summaries to make things
even faster.

Finally, we have compared performance of the
two PanDA monitor instances (Fig. 7); for NoSQL
flavor precalculated and aggregated data were
used.

One can see that request and page generation
times for NoSQL archive are almost constant (for a

Figure 6: Page generation (T,,) and DB request (Ty;,)
times for non-aggregated and aggregated data

T, sec | = Oracle —Tpg

A
= 4l - Oracle — Tdb
120 ,

~—#— Cassandra — Tpg

= === Cassandra — Tdb
90 ;

60

- ‘. M . . .
30 Tk *__ _— * studied range of data), while theoriginal PanDA
g._——-" monitor slows down significantly. Basing on the
0 B - an o Do ww o o o oo o o

results of scalability test we can predict that
NoSQL part will not stay constant for a wider data
range, but still results look promising.

0 20 40 60 Njobs, 10°
Figure 7: Performance of NoSQL archive prototype

6. Conclusions and Future Work

This work was devoted to finding ways of improving the analytical abilities of PanDA monitor
software taking into account fundamental properties of historical job metadata. Using Apache
Cassandra, the storage engine that can reliably handle large amounts of data and scales horizontally
sufficiently well for our task, we had studied the possibility of using BigTable-based NoSQL
technologies exploiting specifics of the stored information and the way PanDA monitor works with it.
A concept of hybrid metadata storage was architectured and to prove its feasibility we had ported the
worst-behaving part of the monitor to that framework.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 042023 doi:10.1088/1742-6596/664/4/042023

Our tests yield the following conclusions:

e (Cassandra shows a good scalability (for the month-worth timescale we were testing at), which is
very important for systems like PanDA, where the archive database hosts metadata for more than
900 M jobs today and grows every day for 1-2 M of records.

e Column-based NoSQL storage, such as Cassandra or HBase, may seem to have too severe
restrictions on data organization and querying, but query adoption is possible and it just makes us
to think carefully about the data layout, basing on what do we want to use them for.

e It may look like we have to store an excessive number of copies for the same data, but actually it's
almost the same as if we had a number of complicated indices on one table in SQL or
document-oriented NoSQL engine.

e Carefully organized data and other elaborations (that come very natural with NoSQL design
practices), such as advance data aggregation and precalculation, provide significant performance
improvement without adding much complexity to the resulting system.

This makes us to believe that the idea of creating NoSQL-based metadata archive for PanDA
proved to be a healthy one, but still there are a lot of things to be done. Our future work items are:
e to implement functionality that will cover the rest of SQL-based logics for analytics;
e to perform more scalability and real-world usage tests on a wider range of data;
e to verify our assumptions on how other NoSQL engines will perform in place of Cassandra;
e to integrate the resulting code with the production PanDA monitor instances.

Acknowledgements

We wish to thank all our colleagues from the ATLAS experiment, PanDA team and CERN IT.

This work was funded in part by the Russian Ministry of Science and Education under contract
Ne 14.750.31.0024. Testbed resources at NRC KI are supported as a part of the centre for collective
usage (project RFMEF162114X0006, funded by Ministry of Science and Education of Russia).

References

[1] Maeno T. et al. 2012 Evolution of the ATLAS PanDA Production and Distributed Analysis
System, Proc. Int. Conf. on Computing in High Energy and Nuclear Physics, J. Phys. Conf.
Ser.

[2] ATLAS Collaboration 2008, The ATLAS Experiment at the CERN Large Hadron Collider,
J. Inst. 3 S08003

[3] Panitkin S. et al. 2015 Integration of PanDA workload management system with Titan
supercomputer at OLCF Proc. Int. Conf. on Computing in High Energy and Nuclear Physics,
J. Phys. Conf. Ser.

[4] Berezhnaya A. 2015 et al Integration of Russian Tier-1 Grid Center with High Performance
Computers at NRC-KI for LHC experiments and beyond HENP. Proc. Int. Conf. on
Computing in High Energy and Nuclear Physics, J. Phys. Conf. Ser.

[5] Apache Cassandra, http://planetcassandra.org

[6] Chang, Fay, et al. 2008 Bigtable: A distributed storage system forstructured data. ACM
Transactions on Computer Systems 26.2: 4

[7] Shafer J. and Rixner S. 2010 The Hadoop distributed filesystem: balancing portability and
performance Proc. IEEE International Symposium on Performance Analysis of Systems &
Software, pp.122-133

] MongoDB, http://docs.mongodb.org/master/MongoDB-indexes-guide.pdf

[9] Django-nonrel, https://github.com/django-nonrel

[10] Apache Cassandra compaction types:

http://www.datastax.com/dev/blog/leveled-compaction-in-apache-cassandra

http://www.datastax.com/dev/blog/datetieredcompactionstrategy

